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Abstract Type 1 diabetes results from the T cell-mediated destruction of pancreatic beta cells. Islet transplantation
has recently become a potential therapeutic approach for patients with type 1 diabetes. However, islet-graft failure
appears to be a challenging issue to overcome. Thus, complementary gene therapy strategies are needed to improve
the islet-graft survival following transplantation. Immune modulation through gene therapy represents a novel way
of attacking cytotoxic T cells targeting pancreatic islets. Various death ligands of the TNF family such as FasL, TNF, and
TNF-Related Apoptosis-Inducing Ligand (TRAIL) have been studied for this purpose. The over-expression of TNF or FasL
in pancreatic islets exacerbates the onset of type 1 diabetes generating lymphocyte infiltrates responsible for the
inflammation. Conversely, the lack of TRAIL expression results in higher degree of islet inflammation in the pancreas. In
addition, blocking of TRAIL function using soluble TRAIL receptors facilitates the onset of diabetes. These results suggested
that contrary to what was observed with TNF or FasL, adenovirus mediated TRAIL gene delivery into pancreatic islets is
expected to be therapeutically beneficial in the setting of experimental models of type 1 diabetes. In conclusion; this study
mainly reveals the fundamental principles of death ligand-mediated immune evasion in diabetes mellitus.
J. Cell. Biochem. 104: 710–720, 2008. � 2008 Wiley-Liss, Inc.
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Diabetes is a disease that drastically reduces
life-expectancy and the quality of life. It is
predicted that 250 million people will be affected

with diabetes in the world by 2010 [McCarty and
Zimmet, 1994], making it the third most common
disease and the fourth leading cause of death
in North America [Boyle et al., 2001]. Insulin
injection is the main treatment modality for
patients with type 1 diabetes. While this ap-
proach protects patients from nephropathy,
neuropathy and retinopathy, it does not prevent
the recurrence of hypoglycemic events, seizures,
and coma. In addition, the loss of physio-
logic insulin secretion cannot be compensated
through the insulin administration into the
patients. While pancreas transplantation
can prolong and improve the quality of life, the
procedure is controversial because of the less
favorable outcome due to major surgery and
the need for long-term immunosuppression
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[Gruessner et al., 1997]. As an alternative,
transplantation of pancreatic islets is one means
of avoiding major surgery and the complications
associated with insulin injections [Bromberg and
LeRoith, 2006]. Even though islet transplanta-
tion has been a promising approach for the
treatment of patients with type 1 diabetes, the
success of the approach was challenged due to
the high frequency of non-functioning grafts
and secondary graft failure leading to the
necessity of the majority of recipients to resume
the administration of insulin at 5 years [Shapiro
et al., 2005]. Despite all the methods devised to
protect the beta cells from the immune mediated
destruction, the agents could only delay, not
prevent, the eventual failure of the transplanted
beta cells [Skyler et al., 2002].

The ultimate goal of islet transplantation is to
completely correct the diabetic syndrome with-
out the need for chronic immunosuppressive
drug therapy. In order to maintain long term
graft function, both alloimmune and auto-
immune barriers must be overcome. Thus,
tolerance induction is one of the objectives in
islet transplantation. Initial studies investigat-
ing the protection of islets from the immune
system involved the transplantation of islets
into immune privileged sites, such as the testis,
brain or thymus. It quickly became obvious
that these sites did not protect the grafts
through sequestration, but relied on the acti-
vation of apoptotic pathways, such as Fas ligand
(FasL)-induced apoptosis [Takeda et al., 1998].
This observation revealed the feasibility of
an immune modulation strategy consisting of
death ligand expression in pancreatic islets
by means of gene therapy for the purpose of
destroying (or avoiding) beta cell reactive
cytotoxic T cells. Thus, gene therapy arose as
an alternative treatment modality for the treat-
ment of type 1 diabetes patients [Harlan, 2004].
FasL, TNF [Dajani et al., 2007] and TNF
Related Apoptosis Inducing Ligand (TRAIL)
are well known as apoptosis inducing members
of the TNF family, which are all implicated in
the pathogenesis of type 1 diabetes. Below is
the summary of the current literature on
what we know about these death ligands, their
prospective roles in type 1 diabetes as well as
their potential therapeutic applications in the
context of gene therapy. A particular emphasis
will be given to TRAIL, since it has some
discrete immune-modulatory properties com-
pared to TNF or FasL.

TNF-ALPHA AND FASL PLAY ESSENTIAL ROLES
DURING THE COURSE OF TYPE 1 DIABETES

Despite the fact that apoptosis mediates beta-
cell death both in rodents and humans, the
effector molecules responsible of the develop-
ment of type 1 diabetes are still disputed
[Santamaria, 2001]. A model depicting the mole-
cular pathogenesis of type 1 diabetes is given
on Figure 1. An islet inflammation (insulitis)
generally precedes the development of type 1
diabetes. This process requires the involvement
of local professional antigen presenting cells
(APC), such as dendritic cells, macrophages
and B cells, in addition to CD4þ T cells and
CD8þ T cells (Fig. 1A). A prolonged period of
insulitis may lead to the preferential amplifica-
tion of autoreactive CD8þ T cells bearing high
affinity T cell receptors (TCR). The differentia-
tion of high affinity CD8þ pre-CTLs into CTLs
is accomplished via TCR recognition of
target peptide-MHC I complexes on local APC
in CD4þ T helper (Th) independent manner
(Fig. 1B). Co-stimulatory pathways involving
CD28-B7 are believed to be essential for this
process. T cell effector pathways involving Fas/
Fas-ligand (Fas-FasL) interaction or the per-
forin/granzyme system are primarily responsi-
ble for the beta cell destruction. According to this
model, perforin production from CD8þ T cells
initiates the immune response, and then Fas/
FasL interaction causes CD4þ T cell-induced
beta cell death [Augstein et al., 1998; Eizirik and
Mandrup-Poulsen, 2001]. In addition, the inter-
action between the APC and T cells initiates an
inflammatory response resulting in the produc-
tion of high concentrations of proinflammatory
cytokines locally in the islets. These cytokines
then facilitate the induction of apoptotic signal-
ing cascades in the pancreatic beta cells [Miwa
et al., 1998; Heimberg et al., 2001]. Both CD8þ

and CD4þ T cells can secrete TNF and INF-g
upon antigen recognition. TNF enhances auto-
antigen presentation and IL-1 secretion by local
APC. By binding to specific receptors on beta
cells, these proinflammatory cytokines induce
either apoptosis through caspase cleavage (TNF)
or necrosis through NO production (INF-g and
IL-1). These three cytokines can also upregulate
Fas and MHC I expression on beta cells in order
to facilitate cell recognition and cell death
[Yamada et al., 1996]. All these results suggest
that TNF and Fas signaling play major roles
during the development of type 1 diabetes. Yet,
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Fig. 1. An inflammatory model for the pathogenesis of type 1
diabetes. Prolonged insulitis leads to preferential amplification of
autoreactive CD8þ T cells bearing high affinity receptors for islet
antigens (Panel A). Differentiation of CD8þ and CD4þ T cells into
effector cytotoxic T cells (CTLs) (Panel B). Effector phase of type 1
diabetes (Panel C). Unknown environmental factors cause MHC
class I restricted presentation of the beta cell antigen on the cell
surface. CD8þ T cells recognizing this antigen generates MHC
class I restricted beta cell damage through the secretion of INFg or

TNF/TRAIL or the perforin/granzyme system. Liberated beta-cell
components, such as insulin are taken up by the dendritic cells in
islets and transported to the regional pancreatic lymph nodes,
where the antigens are processed and presented to CD4þ T cells.
After the clonal expansion, CD4þ T cells will move to the islets to
perform CD4þ T cell-mediated killing using FasL/Fas system.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]



another member of TNF superfamily, TRAIL,
has recently been linked to have a profound
impact on autoimmune diabetes.

MOLECULAR EVIDENCES CONNECTING TRAIL
SIGNALING TO AUTOIMMUNE DIABETES

Two animal models of autoimmune diabetes
were utilized to understand the potential roles
of TRAIL in type 1 diabetes [Lamhamedi-
Cherradi et al., 2003]. In the first model, a
soluble TRAIL receptor was injected into NOD
mice to counteract TRAIL function. Blocking
TRAIL in this manner considerably increased
the onset of diabetes and augmented the degree
of autoimmune inflammation in pancreatic
islets. In the second model, multiple low-doses
of streptozotocin (STZ) were given to normal
and TRAIL-deficient C57BL/6 mice. Contrary
to TNF or FasL, TRAIL-deficient animals
manifested a higher degree of islet inflamma-
tion leading to an earlier onset of diabetes
[Lamhamedi-Cherradi et al., 2003]. This
finding suggests that TRAIL expression might
be required for the down-regulation of auto-
immune inflammatory response in type 1
diabetes.

A recent study suggested that TRAIL re-
ceptors are expressed both in the human beta
cell lines and in the normal primary islet cells
[Ou et al., 2002]. Most of the human beta cells
expressed all four TRAIL receptors and/or
TRAIL. Interestingly, both of the beta cell lines
(CM and HP62) were sensitive to TRAIL,
whereas normal primary islet cells isolated
from the most donors were resistant to the
TRAIL-induced cytotoxicity [Ou et al., 2005].
Moreover, the fact that TRAIL induced much
stronger cytotoxicity to the human beta cell
lines than did the other cytokines brought up
the possibility of TRAIL involvement in the
development of type 1 diabetes. Freshly isolated
T cells do not express TRAIL unless they are
treated with the type I interferon or CD3
ligation [Kayagaki et al., 1999]. This was
further confirmed by the studies showing an
increased expression of TRAIL in the infiltrat-
ing cells of the pancreatic islets in patients
with type 1 diabetes [Cheung et al., 2005].
Intriguingly, TNF and IFN-g treatment up-
regulated TRAIL gene expression in pancreatic
islets of NOD mice but still TRAIL failed
to induce apoptosis of freshly isolated pancre-
atic islets [Mi et al., 2003].

FUNCTIONAL CONSEQUENCE OF TRAIL
SIGNALING IN PANCREATIC ISLETS

TRAIL is a type II membrane protein that
can bind to five different receptors: TRAIL-R1
(DR4), TRAIL-R2 (DR5), TRAIL-R3 (DcR1),
TRAIL-R4 (DcR2), and osteoprotegerin (OPG)
[Wiley et al., 1995]. Current TRAIL receptor
signaling and NF-kB activation pathway, as
well as their cross-talk, are displayed on
Figure 2 [MacFarlane, 2003; Sanlioglu et al.,
2003]. DR4 and DR5 function as authentic
death receptors that signal for apoptosis, while
DcR1 and DcR2 are unable to induce such
signaling because they lack the intracellular

Fig. 2. TRAIL receptor signaling pathway. Activation of TRAIL
receptor 1 (DR4) or 2 (DR5) by trimeric TRAIL ligands leads to the
recruitment of Fas-associated death domain protein (FADD) to
the membrane. Then, FADD recruits procaspase 8 to form death
inducing signaling complex (DISC). DISC-induced signaling
activates caspase pathway pushing cells into apoptosis. cFlip, a
procaspase 8 homologue, competes with procaspase 8 for
binding to FADD, thereby inhibiting apoptosis. Antiapoptotic
NF-kB signaling can also be activated by TRAIL and TRAIL-R4
(DcR2) interaction in an IkB Kinase (IKK) dependent fashion.
TRAIL-R3 (DcR1) has a truncated cytoplasmic domain, allowing
it to serve as a decoy receptor for TRAIL. Interestingly
proinflamotory cytokine (TNF and IL-1) dependent activation of
IKK and thereby NF-kB, has been claimed to induce apoptosis in
pancreatic islets. If so, the reason why cells do not undergo
apoptosis when DcR2 activates NF-kB signaling presents itself as
an intricate dilemma to resolve. Knowing that the death
receptor activation (DR4 or DR5) also may lead to the activation
of NF-kB signaling via TRAF-2 and NIK complicates this issue
further. Four different ways of inhibiting TRAIL-mediated
apoptosis by way of NF-kB is outlined in the figure. Osteopro-
tegerin (OPG) is also another receptor interacting with TRAIL.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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death domain [Griffith and Lynch, 1998;
Karacay et al., 2004; Aydin et al., 2007].
The engagement of TRAIL with its receptors
DR4, DR5, and DcR2 (but not DcR1) activates
anti-apoptotic NF-kB signaling pathways
[Degli-Esposti et al., 1997; Sanlioglu et al.,
2005, 2006]. Thus, TRAIL over-expression in
islets is expected to activate NF-kB signaling as
well. However, the consequence of TRAIL-
induced NF-kB activation in islets is not known.
NF-kB is well known for its anti-apoptotic
properties as demonstrated in cancer cells.
Intriguingly, proinflammatory cytokine activa-
tion of NF-kB has been linked to beta cell death
[Larsen et al., 2005; Ortis et al., 2006], but its
inactivation correlated with islet graft function
[Eldor et al., 2006]. Consequently, the contro-
versial issue that remains is whether the
activation of NF-kB signaling is beneficial or
detrimental for the islet-graft survival in islet
transplantation [Kim et al., 2007]. Neverthe-
less, the consequence of TRAIL-mediated
NF-kB activation might differ from proinflam-
matory cytokine-induced NF-kB signaling.

Previous studies demonstrated that NF-kB
inducing agents up-regulated cFLIP synthesis
blocking caspase activation [Kreuz et al., 2001].
In addition, NF-kB activation increases TRAIL-
R3 synthesis, a decoy receptor for TRAIL
[Bernard et al., 2001], and the expression
of apoptosis inhibitor Bcl-xL [Hatano and
Brenner, 2001; Ravi et al., 2001] resulting in
the inhibition of TRAIL-mediated apoptosis.
Apoptosis inhibitors such as cIAP are also
induced by NF-kB signaling [Mitsiades et al.,
2002]. Based on these results, there are at least
four different ways to block TRAIL-induced
apoptosis through NF-kB (Fig. 2). Because
TRAIL can neutralize its own apoptosis induc-
ing effects, it is not clear how cells decide
whether to go under apoptosis or not following
TRAIL treatment. Nevertheless, activation
of antiapoptotic NF-kB signaling by TRAIL
itself might constitute one of the possible ways
of avoiding TRAIL cytotoxicity in pancreatic
islets.

The variations in the ratio of TRAIL death to
decoy receptors might constitute a reason for
TRAIL resistance in pancreatic islets. Immuno-
staining approaches became valuable tools to
analyze TRAIL expression on tissues [Aydin
et al., 2007; Sanlioglu et al., 2007b,c]. For
example, the localization of TRAIL and its
receptors on fetal pancreas were analyzed using

confocal fluorescence immunohistochemistry
[Chen et al., 2003]. TRAIL-expressing cells
were mainly located on the periphery of the
pancreatic islets. While DcR1 and DcR2 expres-
sions were detectable on a few cells, no expres-
sion was detected using DR4 and DR5
antibodies. The fact that the pancreatic cells
expressed TRAIL and the TRAIL decoy recep-
tors suggested the cells were resistant to
apoptosis. Our recent study showing high levels
of TRAIL and the decoy receptors expression
in human islets also supported this notion
[Sanlioglu et al., 2008]. Pancreatic ductal cell
carcinoma cells expressing both the TRAIL
and its receptors, however, are sensitive to
TRAIL-induced apoptosis [Satoh et al., 2001].
Thus, there appears to be certain differences in
the TRAIL sensitivity of cancerous islet cells
versus normal islets. Moreover, since cytokine-
induced OPG expression protected pancreatic
beta cells from destruction; this particular
TRAIL interacting receptor has recently been
identified as autocrine or paracrine survival
factor for beta cells [Schrader et al., 2007].

IS OVER-EXPRESSION OF DEATH LIGANDS OF
TNF SUPER FAMILY A VIABLE STRATEGY TO
AVOID BETA CELL SPECIFIC CYTOTOXIC T

CELL ATTACK?

Because type 1 diabetes results from the
T cell-mediated destruction of the insulin-
producing pancreatic beta cells [Kurrer et al.,
1997], the depletion of the autoreactive T cells
via apoptosis represents a viable strategy for
the prevention of autoimmune diabetes (Fig. 3).
Activation of the Fas-induced pathway while
interfering with the co-stimulation (second
signal) enhances the apoptosis of peripheral
lymphocytes in vitro [Akalin et al., 1997].
Despite obtaining promising results using an
adenovirus carrying both the human CTLA-4
and FasL genes (AdCTLA4-FasL) to treat
diabetes [Jin et al., 2004], recent reports have
challenged the use of FasL in the generation of
immune tolerance. For example, CMV-hFasL
transgenic mice were generated in order to
investigate the role of the Fas-FasL pathway in
the pathogenesis of STZ-induced type 1 diabetes
[Lin et al., 2003]. Interestingly, the transgenic
mice were more sensitive to diabetes than the
control WT mice, because the over-expressed
FasL stimulated IL-1 production and facilitated
neutrophil infiltration [Miwa et al., 1998]. This
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observation is consistent with reports that
transgenic expression of FasL on beta cells
resulted in the earlier onset of type 1 diabetes
[Allison et al., 1997; Chervonsky et al., 1997;
Petrovsky et al., 2002]. Similarly, cardiac
grafts expressing transgenic FasL were quickly
rejected by neutrophils when transplanted
into syngeneic or allogeneic hosts [Takeuchi
et al., 1999]. FasL is synthesized as a type II
transmembrane protein, but it can be cleaved
by matrix metalloproteases after cell surface
expression [Tanaka et al., 1998]. For this
reason, it was hypothesized that the soluble
FasL contributed to the graft rejection either by
preventing apoptosis of the graft-reactive T cells
[Suda et al., 1997], and/or acting as a chemo-
tactic factor for neutrophils [Seino et al., 1998].

Parallel results were obtained using TNF.
Specifically, transgenic production of TNF (RIP-
TNF) in pancreatic islets induced insulitis
[Higuchi et al., 1992; Picarella et al., 1993;
Rajagopalan et al., 2003]. Furthermore, local
TNF synthesis promoted type 1 diabetes in
NOD mice by enhancing antigen presentation
[Green et al., 1998]. In accordance with this,
transgenic expression of soluble TNF receptor
prevented autoimmune diabetes in NOD mice
[Hunger et al., 1997]. Since infiltrating cells of
the pancreatic islets displayed elevated levels
of TRAIL expression in patients with type 1

diabetes [Cheung et al., 2005], these cells might
well use TRAIL death ligand in the destruction
of beta cells. Conversely, it is expected that
exogenous TRAIL over-expression might pro-
tect pancreatic islets from CTL invasion, as
depicted on Figure 3. Below is such an assess-
ment of potential application of TRAIL for the
purpose of defying autoreactive T cells targeting
pancreatic islets.

POTENTIAL OUTCOME OF TRAIL
INTERACTION WITH ISLET TARGETING T CELLS

Compared to the other members of the TNF
family such as FasL and TNF, TRAIL has
distinct apoptosis inducing properties on
cells—specifically, TRAIL is a potent inducer
of tumor cell apoptosis but is nontoxic to normal
cells and tissues [Griffith et al., 2002; Steele
et al., 2006; Terzioglu et al., 2007; Sanlioglu
et al., 2007a]. Furthermore, unlike TNF, which
can initiate and exacerbate autoimmune dis-
eases, TRAIL is reported to down-regulate
immune responses. For this reason, the role
of TRAIL in the lymphocyte survival was
also analyzed using splenocytes isolated from
BALB/c mice [Song et al., 2000]. While FasL
induced apoptosis of the activated T cells,
TRAIL inhibited their proliferation without
inducing apoptosis. TRAIL also prevented the
cell cycle transition from G1 to S phase of the
lymphocytes by inhibiting DNA synthesis. For
this reason, it was suggested that, unlike TNF
or FasL, TRAIL inhibits the activation and the
expansion of lymphocytes in vivo, but does not
delete them from the system. Intriguingly,
contrary to resting T cells, IL-2 stimulated
T cells are sensitive to TRAIL-mediated apop-
tosis, suggesting that TRAIL might be involved
in the peripheral deletion of T cells [Ashkenazi
and Dixit, 1999]. All these results suggest that
exogenous TRAIL expression in pancreatic
islets may have beneficial results in the setting
of type 1 diabetes by virtue of its potential to
retaliate against the assault by CTL.

THE SIGNIFICANCE AND THE NEED FOR
THE COMPLEMENTARY GENE THERAPY

MODALITIES IN ISLET TRANSPLANTATION

Prior to in situ transduction of pancreatic
islets with viral vectors, the pancreas must be
dissected from the patient and the islets need to
be properly separated from the surrounding
tissue [Van Linthout and Madeddu, 2005]. An

Fig. 3. Death ligand expression in pancreatic islets and its
potential outcome. These therapeutic approaches are designed
to prolong the graft survival in patients with type 1 diabetes.
Pancreatic islet grafts protected from the immune-mediated
cytotoxic T cell attack are expected to function longer after the
transplantation. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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experimental pancreatic islet isolation scenario
for the purpose of transplantation is depicted on
Figure 4. Here, the islets go through a quality
check (the number, live-death ratio and the
purity etc.) following isolation before the trans-
plantation. Later, the islets are ready to be
transduced by gene therapy vectors, such as
adenovirus. Adenoviral vectors are the most
commonly used viral vectors in gene therapy
clinical trials [Sanlioglu et al., 2003]. The
importance of gene altered islets for trans-
plantation has recently been reviewed [D’Anneo
et al., 2006; Samson and Chan, 2006]. One
such example of adenoviral transduction of
rat pancreatic islets is depicted in Figure 5.

Despite high transduction levels and wide
tissue tropism, adenovirus can only provide
transient gene expression due to its inability to
integrate into the host genome. Conversely,
this integration defect can be advantageous,
considering the increased malignancy risks
associated with retroviral vectors [Woods
et al., 2006]. Despite the antigenic properties
of adenovirus [Doerschug et al., 2002], which
is a major concern limiting transgene expres-
sion, the induction of the cellular immune
response can be minimized using appropriate
immunosuppressant regiments. For example,
an adenovirus vector carrying hepatocyte
growth factor reduced the minimal islet

Fig. 4. Experimental pancreatic islet isolation and purification
scheme for the transplantation purposes. Rat islets were isolated
with in situ ductal diffusion of Liberase R1. Islets were separated
with density gradient in Histopaque-1077. A view of an islet layer
acquired during the pancreatic islet isolation procedure is given
on the top left panel. A phase contrast microscopic view of a
normal rat pancreatic islet is shown on the top right panel.
Propidium Iodide (PI—middle left panel) and Fluorescein

Diacetate (FDA—middle right panel) stainings were performed
for the cell viability and later analyzed under the fluorescent
microscope. Bottom panels represent unstained isolated rat
pancreatic islets (left panel) and Dithiazone (DTZ) staining
indicating the cell purity (right panel). [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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transplant mass required in a glucocorticoid
free rat model of allogeneic portal vein islet
delivery [Lopez-Talavera et al., 2004]. In addi-
tion, systemic delivery of adenovirus vectors
with clamped liver circulation effectively trans-
duced pancreatic islets in vivo [Ayuso et al.,
2004]. There are various strategies currently
being investigated as experimental gene ther-
apy models for type 1 diabetes patients which
are designed to subvert autoimmunity [Fer-
nandes et al., 2004]. For example, recombinant
adeno associated virus-IL10 (rAAV-IL10) injec-
tions reduced lymphocyte infiltration into
the transplanted tissue and prolonged graft
survival in NOD mice [Zhang et al., 2003].
Adenovirus vectors expressing TGF-b also
protected pancreatic islets from autoimmune
destruction [Suarez-Pinzon et al., 2002]. Lastly,
intra-pancreatic CCL4 expression effectively
suppressed inflammatory response targeting
beta cells [Meagher et al., 2007]. Collectively,
these studies suggest that improving islet graft
survival is achievable in the experimental
gene therapy animal models. Since normal
adult pancreatic cells are resistant to TRAIL,
this information alleviates the concerns about

TRAIL cytotoxicity upon exogenous TRAIL
gene transfer into pancreatic islets and an
adenovirus-mediated TRAIL gene transfer
strategy (Ad5hTRAIL) [Griffith et al., 2000]
should be very useful to over-express TRAIL in
the pancreatic islets. Additional studies are
needed, however, to understand the molecular
mechanisms underlying islet graft survival to
develop more effective treatment strategies
against type 1 diabetes.
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